A note on 2D Navier–Stokes equations
نویسندگان
چکیده
Abstract In this note, we prove a new $$L^4$$ L 4 -estimate of the velocity by technique Hardy space $${\mathcal {H}}^1$$ H 1 and BMO .
منابع مشابه
A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملModified augmented Lagrangian preconditioners for the incompressible NavierStokes equations
We study different variants of the augmented Lagrangian (AL)-based block-triangular preconditioner introduced by the first two authors in [SIAM J. Sci. Comput. 2006; 28: 2095–2113]. The preconditioners are used to accelerate the convergence of the Generalized Minimal Residual method (GMRES) applied to various finite element and Marker-and-Cell discretizations of the Oseen problem in two and thr...
متن کاملA note on adaptive 2D-H strings
A picture is de ned to be ambiguous if there exists more than one di erent reconstructed picture from its representation In this paper we rst give an ambiguous case based on the adaptive D H string representation Next we show how to avoid the ambiguous cases
متن کاملA note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations
Let Ω��2 be an open set and f�C2(�) with f” > 0. In this note we prove that entropy solutions of Dtu+Dxf(u) = 0 belong to SBVloc(Ω). As a corollary we prove the same property for gradients of viscosity solutions of planar Hamilton–Jacobi PDEs with uniformly convex Hamiltonians. DOI: https://doi.org/10.1142/S0219891604000263 Posted at the Zurich Open Repository and Archive, University of Zurich ...
متن کاملA note on the eight tetrahedron equations
In this paper we derive from arguments of string scattering a set of eight tetrahedron equations, with different index orderings. It is argued that this system of equations is the proper system that represents integrable structures in three dimensions generalising the Yang-Baxter equation. Under additional restrictions this system reduces to the usual tetrahedron equation in the vertex form. Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Partial Differential Equations And Applications
سال: 2021
ISSN: ['2662-2971', '2662-2963']
DOI: https://doi.org/10.1007/s42985-021-00129-0